博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
滑动平均模型原理+源码分析
阅读量:6005 次
发布时间:2019-06-20

本文共 26375 字,大约阅读时间需要 87 分钟。

滑动平均原理部分

  注释:原理部分参考,不过这个讲解的太菜了,评论清一色都是看不懂,大家简单看一下原理,例子别看了,越看越糊涂~~

  一、简单移动平均法

    简单移动平均的各元素的权重都相等。简单的移动平均的计算公式如下: Ft=(At-1+At-2+At-3+…+At-n)/n式中,

    ·Ft--对下一期的预测值;

    ·n--移动平均的时期个数;

    ·At-1--前期实际值;

    ·At-2,At-3和At-n分别表示前两期、前三期直至前n期的实际值。

  二、加权移动平均法

    加权移动平均给固定跨越期限内的每个变量值以不同的权重。其原理是:历史各期产品需求的数据信息对预测未来期内的需求量的作用是不一样的。除了以n为周期的周期性变化外,远离目标期的变量值的影响力相对较低,故应给予较低的权重。加权移动平均法的计算公式如下:

    Ft=w1At-1+w2At-2+w3At-3+…+wnAt-n式中,

    ·w1--第t-1期实际销售额的权重;

    ·w2--第t-2期实际销售额的权重;

    ·wn--第t-n期实际销售额的权

    ·n--预测的时期数;w1+ w2+…+ wn=1

TF滑动平均原理:

  TensorFlow中提供了tf.train.ExponentialMovingAverage 来实现滑动平均模型,在采用随机梯度下降算法训练神经网络时,使用其可以提高模型在测试数据上的健壮性(robustness)。

TensorFlow下的 tf.train.ExponentialMovingAverage 需要提供一个衰减率decay。该衰减率用于控制模型更新的速度。该衰减率用于控制模型更新的速度,ExponentialMovingAverage 对每一个待更新的变量(variable)都会维护一个影子变量(shadow variable),影子变量的初始值就是这个变量的初始值.

  上述公式与之前介绍的一阶滞后滤波法的公式相比较,会发现有很多相似的地方,从名字上面也可以很好的理解这个简约不简单算法的原理:平滑、滤波,即使数据平滑变化,通过调整参数来调整变化的稳定性。
  在滑动平滑模型中, decay 决定了模型更新的速度,越大越趋于稳定。实际运用中,decay 一般会设置为十分接近 1 的常数(0.999或0.9999)。为了使得模型在训练的初始阶段更新得更快,ExponentialMovingAverage 还提供了 num_updates 参数来动态设置 decay 的大小:

  注释:其实原理大家一眼看去就明白了,但是实际操作还是有点麻烦的,我在这里不去单纯的讲解原理怎么实现,下面结合TF的例子和源代码去分析。

TF程序原理:  

1 import tensorflow as tf 2 v1 = tf.Variable(0, dtype=tf.float32)#初始化v1变量 3 step = tf.Variable(0, trainable=False) #初始化step为0 4 ema = tf.train.ExponentialMovingAverage(0.99,step) #定义平滑类,设置参数以及step 5 maintain_averages_op = ema.apply([v1]) #定义更新变量平均操作, 6 with tf.Session() as sess: 7     # 初始化 8     init_op = tf.global_variables_initializer() 9     sess.run(init_op)10     print (sess.run([v1, ema.average(v1)]))11     # 更新变量v1的取值12     sess.run(tf.assign(v1, 5))13     sess.run(maintain_averages_op)14     print (sess.run([v1, ema.average(v1)]))15     # 更新step和v1的取值16     sess.run(tf.assign(step, 1))17     sess.run(tf.assign(v1, 1000))18     sess.run(maintain_averages_op)19     print (sess.run([v1, ema.average(v1)]))20     # 更新一次v1的滑动平均值21     sess.run(maintain_averages_op)22     print (sess.run([v1, ema.average(v1)]))

程序运行过程:

  step1:V0 = 0 , step = 0 , decay = 0.1

  result  : [0.0,0.0]

  step2:V1 = 0 , step = 0,  decay = 0.1

  result:[5.0,4.5]

  step3:V1 = 1000 , step = 1,  decay = 0.1818

  result:[1000,819.0]

  step4:V1 = 1000 , step = 1,  decay = 0.1818

  result:[1000,967.09094]

TF源代码:
1 # Copyright 2015 The TensorFlow Authors. All Rights Reserved.  2 #  3 # Licensed under the Apache License, Version 2.0 (the "License");  4 # you may not use this file except in compliance with the License.  5 # You may obtain a copy of the License at  6 #  7 #     http://www.apache.org/licenses/LICENSE-2.0  8 #  9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 # ============================================================================== 15 """Maintain moving averages of parameters.""" 16 from __future__ import absolute_import 17 from __future__ import division 18 from __future__ import print_function 19  20 from tensorflow.python.framework import dtypes 21 from tensorflow.python.framework import ops 22 from tensorflow.python.ops import control_flow_ops 23 from tensorflow.python.ops import init_ops 24 from tensorflow.python.ops import math_ops 25 from tensorflow.python.ops import state_ops 26 from tensorflow.python.ops import variable_scope 27 from tensorflow.python.ops import variables 28 from tensorflow.python.training import slot_creator 29 from tensorflow.python.util.tf_export import tf_export 30  31  32 # TODO(touts): switch to variables.Variable. 33 def assign_moving_average(variable, value, decay, zero_debias=True, name=None): 34   """Compute the moving average of a variable. 35  36   The moving average of 'variable' updated with 'value' is: 37     variable * decay + value * (1 - decay) 38  39   The returned Operation sets 'variable' to the newly computed moving average. 40  41   The new value of 'variable' can be set with the 'AssignSub' op as: 42      variable -= (1 - decay) * (variable - value) 43  44   Since variables that are initialized to a `0` value will be `0` biased, 45   `zero_debias` optionally enables scaling by the mathematically correct 46   debiasing factor of 47     1 - decay ** num_updates 48   See `ADAM: A Method for Stochastic Optimization` Section 3 for more details 49   (https://arxiv.org/abs/1412.6980). 50  51   The names of the debias shadow variables, by default, include both the scope 52   they were created in and the scope of the variables they debias. They are also 53   given a uniqifying-suffix. 54  55   E.g.: 56  57   ``` 58     with tf.variable_scope('scope1'): 59       with tf.variable_scope('scope2'): 60         var = tf.get_variable('foo') 61         tf.assign_moving_average(var, 0.0, 1.0) 62         tf.assign_moving_average(var, 0.0, 0.9) 63  64     # var.name: 'scope1/scope2/foo' 65     # shadow var names: 'scope1/scope2/scope1/scope2/foo/biased' 66     #                   'scope1/scope2/scope1/scope2/foo/biased_1' 67   ``` 68  69   Args: 70     variable: A Variable. 71     value: A tensor with the same shape as 'variable'. 72     decay: A float Tensor or float value.  The moving average decay. 73     zero_debias: A python bool. If true, assume the variable is 0-initialized 74       and unbias it, as in https://arxiv.org/abs/1412.6980. See docstring in 75       `_zero_debias` for more details. 76     name: Optional name of the returned operation. 77  78   Returns: 79     A reference to the input 'variable' tensor with the newly computed 80     moving average. 81   """ 82   with ops.name_scope(name, "AssignMovingAvg", 83                       [variable, value, decay]) as scope: 84     with ops.colocate_with(variable): 85       decay = ops.convert_to_tensor(1.0 - decay, name="decay") 86       if decay.dtype != variable.dtype.base_dtype: 87         decay = math_ops.cast(decay, variable.dtype.base_dtype) 88       if zero_debias: 89         update_delta = _zero_debias(variable, value, decay) 90       else: 91         update_delta = (variable - value) * decay 92       return state_ops.assign_sub(variable, update_delta, name=scope) 93  94  95 def weighted_moving_average(value, 96                             decay, 97                             weight, 98                             truediv=True, 99                             collections=None,100                             name=None):101   """Compute the weighted moving average of `value`.102 103   Conceptually, the weighted moving average is:104     `moving_average(value * weight) / moving_average(weight)`,105   where a moving average updates by the rule106     `new_value = decay * old_value + (1 - decay) * update`107   Internally, this Op keeps moving average variables of both `value * weight`108   and `weight`.109 110   Args:111     value: A numeric `Tensor`.112     decay: A float `Tensor` or float value.  The moving average decay.113     weight:  `Tensor` that keeps the current value of a weight.114       Shape should be able to multiply `value`.115     truediv:  Boolean, if `True`, dividing by `moving_average(weight)` is116       floating point division.  If `False`, use division implied by dtypes.117     collections:  List of graph collections keys to add the internal variables118       `value * weight` and `weight` to.119       Defaults to `[GraphKeys.GLOBAL_VARIABLES]`.120     name: Optional name of the returned operation.121       Defaults to "WeightedMovingAvg".122 123   Returns:124     An Operation that updates and returns the weighted moving average.125   """126   # Unlike assign_moving_average, the weighted moving average doesn't modify127   # user-visible variables. It is the ratio of two internal variables, which are128   # moving averages of the updates.  Thus, the signature of this function is129   # quite different than assign_moving_average.130   if collections is None:131     collections = [ops.GraphKeys.GLOBAL_VARIABLES]132   with variable_scope.variable_scope(name, "WeightedMovingAvg",133                                      [value, weight, decay]) as scope:134     value_x_weight_var = variable_scope.get_variable(135         "value_x_weight",136         shape=value.get_shape(),137         dtype=value.dtype,138         initializer=init_ops.zeros_initializer(),139         trainable=False,140         collections=collections)141     weight_var = variable_scope.get_variable(142         "weight",143         shape=weight.get_shape(),144         dtype=weight.dtype,145         initializer=init_ops.zeros_initializer(),146         trainable=False,147         collections=collections)148     numerator = assign_moving_average(149         value_x_weight_var, value * weight, decay, zero_debias=False)150     denominator = assign_moving_average(151         weight_var, weight, decay, zero_debias=False)152 153     if truediv:154       return math_ops.truediv(numerator, denominator, name=scope.name)155     else:156       return math_ops.div(numerator, denominator, name=scope.name)157 158 159 def _zero_debias(unbiased_var, value, decay):160   """Compute the delta required for a debiased Variable.161 162   All exponential moving averages initialized with Tensors are initialized to 0,163   and therefore are biased to 0. Variables initialized to 0 and used as EMAs are164   similarly biased. This function creates the debias updated amount according to165   a scale factor, as in https://arxiv.org/abs/1412.6980.166 167   To demonstrate the bias the results from 0-initialization, take an EMA that168   was initialized to `0` with decay `b`. After `t` timesteps of seeing the169   constant `c`, the variable have the following value:170 171   ```172     EMA = 0*b^(t) + c*(1 - b)*b^(t-1) + c*(1 - b)*b^(t-2) + ...173         = c*(1 - b^t)174   ```175 176   To have the true value `c`, we would divide by the scale factor `1 - b^t`.177 178   In order to perform debiasing, we use two shadow variables. One keeps track of179   the biased estimate, and the other keeps track of the number of updates that180   have occurred.181 182   Args:183     unbiased_var: A Variable representing the current value of the unbiased EMA.184     value: A Tensor representing the most recent value.185     decay: A Tensor representing `1-decay` for the EMA.186 187   Returns:188     The amount that the unbiased variable should be updated. Computing this189     tensor will also update the shadow variables appropriately.190   """191   with variable_scope.variable_scope(192       unbiased_var.op.name, values=[unbiased_var, value, decay]) as scope:193     with ops.colocate_with(unbiased_var):194       with ops.init_scope():195         biased_initializer = init_ops.zeros_initializer(196             dtype=unbiased_var.dtype)(unbiased_var.get_shape())197         local_step_initializer = init_ops.zeros_initializer()198       def _maybe_get_unique(name):199         """Get name for a unique variable, if not `reuse=True`."""200         if variable_scope.get_variable_scope().reuse:201           return name202         vs_vars = [x.op.name for x in203                    variable_scope.get_variable_scope().global_variables()]204         full_name = variable_scope.get_variable_scope().name + "/" + name205         if full_name not in vs_vars: return name206         idx = 1207         while full_name + ("_%d" % idx) in vs_vars:208           idx += 1209         return name + ("_%d" % idx)210       biased_var = variable_scope.get_variable(211           _maybe_get_unique("biased"), initializer=biased_initializer,212           trainable=False)213       local_step = variable_scope.get_variable(214           _maybe_get_unique("local_step"),215           shape=[],216           dtype=unbiased_var.dtype,217           initializer=local_step_initializer,218           trainable=False)219 220       # Get an update ops for both shadow variables.221       update_biased = state_ops.assign_sub(biased_var,222                                            (biased_var - value) * decay,223                                            name=scope.name)224       update_local_step = local_step.assign_add(1)225 226       # Compute the value of the delta to update the unbiased EMA. Make sure to227       # use the new values of the biased variable and the local step.228       with ops.control_dependencies([update_biased, update_local_step]):229         # This function gets `1 - decay`, so use `1.0 - decay` in the exponent.230         unbiased_ema_delta = (unbiased_var - biased_var.read_value() /231                               (1 - math_ops.pow(232                                   1.0 - decay, local_step.read_value())))233 234       return unbiased_ema_delta235 236 237 @tf_export("train.ExponentialMovingAverage")238 class ExponentialMovingAverage(object):239   """Maintains moving averages of variables by employing an exponential decay.240 241   When training a model, it is often beneficial to maintain moving averages of242   the trained parameters.  Evaluations that use averaged parameters sometimes243   produce significantly better results than the final trained values.244 245   The `apply()` method adds shadow copies of trained variables and add ops that246   maintain a moving average of the trained variables in their shadow copies.247   It is used when building the training model.  The ops that maintain moving248   averages are typically run after each training step.249   The `average()` and `average_name()` methods give access to the shadow250   variables and their names.  They are useful when building an evaluation251   model, or when restoring a model from a checkpoint file.  They help use the252   moving averages in place of the last trained values for evaluations.253 254   The moving averages are computed using exponential decay.  You specify the255   decay value when creating the `ExponentialMovingAverage` object.  The shadow256   variables are initialized with the same initial values as the trained257   variables.  When you run the ops to maintain the moving averages, each258   shadow variable is updated with the formula:259 260     `shadow_variable -= (1 - decay) * (shadow_variable - variable)`261 262   This is mathematically equivalent to the classic formula below, but the use263   of an `assign_sub` op (the `"-="` in the formula) allows concurrent lockless264   updates to the variables:265 266     `shadow_variable = decay * shadow_variable + (1 - decay) * variable`267 268   Reasonable values for `decay` are close to 1.0, typically in the269   multiple-nines range: 0.999, 0.9999, etc.270 271   Example usage when creating a training model:272 273   ```python274   # Create variables.275   var0 = tf.Variable(...)276   var1 = tf.Variable(...)277   # ... use the variables to build a training model...278   ...279   # Create an op that applies the optimizer.  This is what we usually280   # would use as a training op.281   opt_op = opt.minimize(my_loss, [var0, var1])282 283   # Create an ExponentialMovingAverage object284   ema = tf.train.ExponentialMovingAverage(decay=0.9999)285 286   with tf.control_dependencies([opt_op]):287       # Create the shadow variables, and add ops to maintain moving averages288       # of var0 and var1. This also creates an op that will update the moving289       # averages after each training step.  This is what we will use in place290       # of the usual training op.291       training_op = ema.apply([var0, var1])292 293   ...train the model by running training_op...294   ```295 296   There are two ways to use the moving averages for evaluations:297 298   *  Build a model that uses the shadow variables instead of the variables.299      For this, use the `average()` method which returns the shadow variable300      for a given variable.301   *  Build a model normally but load the checkpoint files to evaluate by using302      the shadow variable names.  For this use the `average_name()` method.  See303      the @{tf.train.Saver} for more304      information on restoring saved variables.305 306   Example of restoring the shadow variable values:307 308   ```python309   # Create a Saver that loads variables from their saved shadow values.310   shadow_var0_name = ema.average_name(var0)311   shadow_var1_name = ema.average_name(var1)312   saver = tf.train.Saver({shadow_var0_name: var0, shadow_var1_name: var1})313   saver.restore(...checkpoint filename...)314   # var0 and var1 now hold the moving average values315   ```316   """317 318   def __init__(self, decay, num_updates=None, zero_debias=False,319                name="ExponentialMovingAverage"):320     """Creates a new ExponentialMovingAverage object.321 322     The `apply()` method has to be called to create shadow variables and add323     ops to maintain moving averages.324 325     The optional `num_updates` parameter allows one to tweak the decay rate326     dynamically. It is typical to pass the count of training steps, usually327     kept in a variable that is incremented at each step, in which case the328     decay rate is lower at the start of training.  This makes moving averages329     move faster.  If passed, the actual decay rate used is:330 331       `min(decay, (1 + num_updates) / (10 + num_updates))`332 333     Args:334       decay: Float.  The decay to use.335       num_updates: Optional count of number of updates applied to variables.336       zero_debias: If `True`, zero debias moving-averages that are initialized337         with tensors.338       name: String. Optional prefix name to use for the name of ops added in339         `apply()`.340     """341     self._decay = decay342     self._num_updates = num_updates343     self._zero_debias = zero_debias344     self._name = name345     self._averages = {}346   def apply(self, var_list=None):347     """Maintains moving averages of variables.348 349     `var_list` must be a list of `Variable` or `Tensor` objects.  This method350     creates shadow variables for all elements of `var_list`.  Shadow variables351     for `Variable` objects are initialized to the variable's initial value.352     They will be added to the `GraphKeys.MOVING_AVERAGE_VARIABLES` collection.353     For `Tensor` objects, the shadow variables are initialized to 0 and zero354     debiased (see docstring in `assign_moving_average` for more details).355 356     shadow variables are created with `trainable=False` and added to the357     `GraphKeys.ALL_VARIABLES` collection.  They will be returned by calls to358     `tf.global_variables()`.359 360     Returns an op that updates all shadow variables as described above.361 362     Note that `apply()` can be called multiple times with different lists of363     variables.364 365     Args:366       var_list: A list of Variable or Tensor objects. The variables367         and Tensors must be of types float16, float32, or float64.368 369     Returns:370       An Operation that updates the moving averages.371 372     Raises:373       TypeError: If the arguments are not all float16, float32, or float64.374       ValueError: If the moving average of one of the variables is already375         being computed.376     """377     # TODO(touts): op_scope378     if var_list is None:379       var_list = variables.trainable_variables()380     zero_debias_true = set()  # set of vars to set `zero_debias=True`381     for var in var_list:382       if var.dtype.base_dtype not in [dtypes.float16, dtypes.float32,383                                       dtypes.float64]:384         raise TypeError("The variables must be half, float, or double: %s" %385                         var.name)386       if var in self._averages:387         raise ValueError("Moving average already computed for: %s" % var.name)388 389       # For variables: to lower communication bandwidth across devices we keep390       # the moving averages on the same device as the variables. For other391       # tensors, we rely on the existing device allocation mechanism.392       with ops.init_scope():393         if isinstance(var, variables.Variable):394           avg = slot_creator.create_slot(var,395                                          var.initialized_value(),396                                          self._name,397                                          colocate_with_primary=True)398           # NOTE(mrry): We only add `tf.Variable` objects to the399           # `MOVING_AVERAGE_VARIABLES` collection.400           ops.add_to_collection(ops.GraphKeys.MOVING_AVERAGE_VARIABLES, var)401         else:402           avg = slot_creator.create_zeros_slot(403               var,404               self._name,405               colocate_with_primary=(var.op.type in ["Variable",406                                                      "VariableV2",407                                                      "VarHandleOp"]))408           if self._zero_debias:409             zero_debias_true.add(avg)410       self._averages[var] = avg411 412     with ops.name_scope(self._name) as scope:413       decay = ops.convert_to_tensor(self._decay, name="decay")414       if self._num_updates is not None:415         num_updates = math_ops.cast(self._num_updates,416                                     dtypes.float32,417                                     name="num_updates")418         decay = math_ops.minimum(decay,419                                  (1.0 + num_updates) / (10.0 + num_updates))420       updates = []421       for var in var_list:422         zero_debias = self._averages[var] in zero_debias_true423         updates.append(assign_moving_average(424             self._averages[var], var, decay, zero_debias=zero_debias))425       return control_flow_ops.group(*updates, name=scope)426 427   def average(self, var):428     """Returns the `Variable` holding the average of `var`.429 430     Args:431       var: A `Variable` object.432 433     Returns:434       A `Variable` object or `None` if the moving average of `var`435       is not maintained.436     """437     return self._averages.get(var, None)438 439   def average_name(self, var):440     """Returns the name of the `Variable` holding the average for `var`.441 442     The typical scenario for `ExponentialMovingAverage` is to compute moving443     averages of variables during training, and restore the variables from the444     computed moving averages during evaluations.445 446     To restore variables, you have to know the name of the shadow variables.447     That name and the original variable can then be passed to a `Saver()` object448     to restore the variable from the moving average value with:449       `saver = tf.train.Saver({ema.average_name(var): var})`450 451     `average_name()` can be called whether or not `apply()` has been called.452 453     Args:454       var: A `Variable` object.455 456     Returns:457       A string: The name of the variable that will be used or was used458       by the `ExponentialMovingAverage class` to hold the moving average of459       `var`.460     """461     if var in self._averages:462       return self._averages[var].op.name463     return ops.get_default_graph().unique_name(464         var.op.name + "/" + self._name, mark_as_used=False)465 466   def variables_to_restore(self, moving_avg_variables=None):467     """Returns a map of names to `Variables` to restore.468 469     If a variable has a moving average, use the moving average variable name as470     the restore name; otherwise, use the variable name.471 472     For example,473 474     ```python475       variables_to_restore = ema.variables_to_restore()476       saver = tf.train.Saver(variables_to_restore)477     ```478 479     Below is an example of such mapping:480 481     ```482       conv/batchnorm/gamma/ExponentialMovingAverage: conv/batchnorm/gamma,483       conv_4/conv2d_params/ExponentialMovingAverage: conv_4/conv2d_params,484       global_step: global_step485     ```486     Args:487       moving_avg_variables: a list of variables that require to use of the488         moving variable name to be restored. If None, it will default to489         variables.moving_average_variables() + variables.trainable_variables()490 491     Returns:492       A map from restore_names to variables. The restore_name can be the493       moving_average version of the variable name if it exist, or the original494       variable name.495     """496     name_map = {}497     if moving_avg_variables is None:498       # Include trainable variables and variables which have been explicitly499       # added to the moving_average_variables collection.500       moving_avg_variables = variables.trainable_variables()501       moving_avg_variables += variables.moving_average_variables()502     # Remove duplicates503     moving_avg_variables = set(moving_avg_variables)504     # Collect all the variables with moving average,505     for v in moving_avg_variables:506       name_map[self.average_name(v)] = v507     # Make sure we restore variables without moving averages as well.508     moving_avg_variable_names = set([v.name for v in moving_avg_variables])509     for v in list(set(variables.global_variables())):510       if v.name not in moving_avg_variable_names and v.op.name not in name_map:511         name_map[v.op.name] = v512     return name_map

注释:

  源代码读起来还是有一点吃力,可能我基础太差了,下面大概解读一下源代码。

  1.class ExponentialMovingAverage(object)整个核心是寄托整个类进行的,下面的函数都是基于此

  2.初始化函数

1 def __init__(self, decay, num_updates=None, zero_debias=False,2                name="ExponentialMovingAverage")3      decay: Float.  The decay to use.初始化的权重4      num_updates: Optional count of number of updates applied to variables.用来计算decay的一个迭代次数5      zero_debias: If `True`, zero debias moving-averages that are initialized6         with tensors.7      name: String. Optional prefix name to use for the name of ops added in8         `apply()`.

  3.def apply(self, var_list=None)

    var_list:当前已知的序列(用已知去预测未知)

    最关键的一点是average函数的求解释在此函数之内进行的。

    此函数释整个类的核心,滑动平均算法也是写在里面的。

  4.def average_name(self, var)

    读取平均值,也就是预测的值,上面讲解过了,此函数的代码实现是在apply中进行的。

  5.def variables_to_restore(self, moving_avg_variables=None)

    保存滑动平均数据

注释:让我最不能理解的是明明是min函数,最后得到的却是max~~~

decay = math_ops.minimum(decay,(1.0 + num_updates) / (10.0 + num_updates))

可能源代码有问题,反正实现很简单了。。

 

 

 

 
 

转载于:https://www.cnblogs.com/wjy-lulu/p/9041430.html

你可能感兴趣的文章
安装express
查看>>
创建服务类PO
查看>>
hdu(2859)——Phalanx(dp)
查看>>
cloudera manager的7180 web界面访问不了的解决办法(图文详解)
查看>>
Spring mvc4 + ActiveMQ 整合
查看>>
pascal+sublime搭建Pascal学习环境
查看>>
聚类(三)FUZZY C-MEANS 模糊c-均值聚类算法——本质和逻辑回归类似啊
查看>>
像屎一样的 Spring Boot入门,总算有反应了
查看>>
Device Tree碎碎念
查看>>
STM32F103ZET6 之 ADC+TIM+DMA+USART 综合实验
查看>>
oracle 锁系列
查看>>
HBuilder开发App教程06-首页
查看>>
深入理解JVM:HotSpot虚拟机对象探秘
查看>>
virtualbox测试k8s要注意的情况
查看>>
mac系统下为emacs设置中文字体,解决乱码问题
查看>>
K8s的内部Pod之间都不通,搞了快两天
查看>>
android RecycleView复杂多条目的布局
查看>>
AAC帧格式及编码介绍
查看>>
一起talk C栗子吧(第一百三十一回:C语言实例--C程序内存布局三)
查看>>
Android项目实战(三十八):2017最新 将AndroidLibrary提交到JCenter仓库(图文教程)...
查看>>